PHOTOCHEMISTRY OF a-OXO-OXIMES-VI¹

IRRADIATION OF

3-ETHOXYIMINO-1,7,7-TRIMETHYLBICYCLO[2.2.1]HEPTAN-2-ONE

P. BAAS and H. CERPONTAIN*

Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

(Received in the UK 19 September 1978; Accepted for publication 28 September 1978)

Abstract—The photolysis of 3-cthoxyimino-1,7,7-trimethylbicyclo[2,2.1]heptan-2-one 1 with λ 254 nm has been investigated in acetonitrile as solvent. Photoexcited 1 undergoes N-O bond homolysis with formation of a cyclic a-oxo-iminyl and an ethoxy radical. Cage recombination of these radicals affords the ethyl cyanocyclopentanecarboxylate 9. The formation of the products $6-8$ is explained by decarbonylation of the α -oxo-iminyl radical, followed by disproportionation and H-abstraction. The occurrence of the α -oxo-iminyl radical and (by loss of CO) the tertiary cyanocyclopentyl radical is substantiated by an ESR photoexperiment in the presence of 2-methyl-2-nitrosopropane.

The predominant photochemical process with acyclic α -oxo-oximes and their derivatives upon irradiation with λ 366 and 313 nm was found to be the (E) - (Z) isomerization.² Irradiation of these compounds with λ 254 nm did however also lead to photodecomposition.¹ We therefore thought it of interest to study the λ 254 nm photochemistry of the cyclic compound 1. Irradiation of 3 - ethoxvimino - 1.7.7 - trimethvi - bicvclo^{[2.2}.1] lheptan - 2 - one 1 with λ 366 nm both in the presence and absence of triplet sensitizers in acetonitrile solution resulted only in the formation of a photostationary state (pss) mixture of the (E) - and (Z) -isomers.²⁶

RESULTS

The irradiation of 1 (0.15 M) with λ 254 nm resulted in the formation of the products 2-10 (Scheme 1) and traces of methane and carbon dioxide. The products 3-5 were formed in the ratio 6:1:6, respectively.

The \leftarrow 10 ratio was found to be 10:9:21:4:1, respectively. According to ¹H NMR 8 consisted of the two isomers 8A and 8B (65:35). The assignment of the methyl absorptions in the ¹H NMR spectra of 8 and 9 (see Table 1) are based on (i) the difference in deshielding of the 198-methyl group in steroids caused by the 1α - and 1β -CN respectively,³ and (ii) the effect of an ester group in *B*-position on the chemical shift of a methyl group.

The photolysis of 3 - acetyloxyimino - $1,7,7$ - trimethylbicyclo - [2.2.1] heptan - 2 - one, i.e. the corresponding acetate of 1, with λ 320 ± 5 nm in benzene in the presence of some 2-methyl-2-nitrosopropane (t-BuNO) resulted, as detected by ESR, in the formation of two radical species derived from the α -oxo-oxime ester. The signal with $a_N = 7.9 \text{ G}$ inferred to be due to an acyl-t-buty hitroxide.⁵⁴

The pivaloyl radical generated by H-abstraction from t-butylcarboxaldehyde by t-butoxy radicals⁶ yielded in the presence of t-BuNO a nitroxide with $a_N = 7.8$ G; the signal with $a_N = 7.9$ is therefore assigned to the nitroxide 11 (see Scheme 2).

The signal with $a_N = 14.1$ G was attributed to the

1135

Table 1. ¹H NMR data of 8 and 9

Scheme 2.

nitroxide 12 on the basis of (i) its a_N value which is typical for an alkyl-t-butylnitroxide⁵⁵ and (ii) the absence of β -hydrogen splitting.

†Di-t-butylnitroxide which was also detected in this experiment gives a signal with $a_N = 15.1$ G.

‡It seems unlikely that the corresponding free radicals formed via steps g and i combine to give 9, as the decarbonylation of the acyl radical (j) and the disproportionation and H-abstraction of the ethoxy radical will be much more favoured.

DISCUSSION

The products formed in the photolysis of 1 with λ 254 nm can be explained in terms of initial N-O bond homolysis with formation of an α -oxo-iminyl and an ethoxy radical [step (a) of Scheme 3]. Such an N-O bond homolysis also occurs in the photolysis of oxime esters⁷ and α -oxo-oxime esters.⁸ The resulting cage radical pair may combine to reform 1 (b), produce via β -scission of the $C(2)$ - $C(3)$ bond a new cage radical pair (c), or diffuse apart (d). The cage radical pair via (c) yields the ester 9(e),t or the tertiary radical 13 via (f) or (g), (j). The

1136

 α -oxo-iminyl radical formed by step (d) may abstract hydrogen to yield eventually the diketone 10, or lead via β -scission (i) and decarbonylation (j) also to the radical 13.

The decarbonylation of the acyl radical 14 $[(f)$ and $(j)]$ will be very much faster than that of, e. g. the acetyl radical, the rate of decarbonylation of the pivaloyl and acetyl radical in the liquid phase at 40° being 5.2×10^4 and ca. $1 s^{-1}$ respectively.⁹ The ESR experiment with the corresponding acetate of 1 corroborates the facile decarbonylation of the acyl radical 14.

The cyanocyclopentyl radical 13 either disproportionates or abstracts hydrogen. The ratio of 6 to 7 is 1.07. It would be 0.67 if it was determined only by statistical factors. 1-Methylcyclopentene is 3.9 kcal mol⁻¹ more stable than methylenecyclopentane;¹⁰ this would infer a ratio of 6 to 7 of more than 700. The formation of the olefins ϵ and τ is apparently determined rather by kinetic than by thermodynamical control. A similar observation was made with the s-butyl radical in pentane solution which yields the more stable 2-butene and the less stable 1-butene in a ratio of 0.8 (the statistical ratio is 0.67).¹¹ The dimerization product of 13 was not detected. This is comparable with the behaviour of, e.g. the t-butyl radicals, which in pentane solution have a ratio of disproportionation to combination of 7.2.¹¹

The ester 9 is obtained in only one isomeric form, whereas two isomers of compound 8 are formed. This is not surprising as in the formation of 9 the $C(1)-C(2)$ and $C(3)$ - $C(4)$ bonds are not broken, which infers that the cyano and carbethoxy groups remain in the cis position. However, by decarbonylation the $C(1)-C(2)$ bond is broken and the planarity of the resulting radical center at $C(1)$ leads to the formation of two isomers of 8.

The formation of 10 proceeding via steps (a) , (d) , (h) and subsequent hydrolysis (see Scheme 3) is analogous to the formation of 1-phenyl-1,2-propanedione on photolyzing 2-acetyloxyimino-1-phenylpropan-1-one.¹²

From the relative product formation it follows that the step (d) , (h) is less important than the cage combination (e), or the decarbonylation (f).

The formation of the products 3-5 and methane may be explained by reactions of the ethoxy radical. These reactions will be discussed in detail for the photolysis of 3-ethoxyiminobutan-2-one.¹

EXPERIMENTAL

The synthesis of 3 - ethoxyimino - $1,7,7$ - trimethylbicyclo -[2.2.1] heptan - 2 - one (1) has been described.² The solvents were purified by distillation and dried before use.

Irradiations and analysis

Materials

The photochemical and analytical techniques were described before

Carbon monoxide (2) was identified on comparison of its GSC (3 m, 1/8 in, Carbosieve B, 120-140 mesh) retention time with that of an authentic sample. Methanal (3), acetic acid (4) and ethanol (5) were identified on a 2 m , $1/4 \text{ in}$, Porapak $Q + S$, 60-80 mesh, copper column. Acetic acid (4) was also identified by comparison of its IR data with the Sadtler Spectra Collection ones.

4,5,5 - Trimethyl - 3 - cyclopentene - 1 - carbonitrile (6). IR (CHCl₃): 2970 (s), 2220 (w, CN), 1650 (vw, C=C), 1360 (m), 895 (m). ¹H NMR (CDCl₃): 5.21 (m, 1H, C=CH), 2.87-2.68 (m, 1H, CH-CN), 2.64-2.44 (m, 2H, CH₂), 1.62 (d, 3H, J = 2 Hz, CH₃C=), 1.15 [s, 6H, $(CH_3)_2C$].†

2.2 - Dimethyl - 3 - methylenecyclopentane - 1 - carbonitrile (7). IR

(CHCl₃): 2980 (s), 2230 (w, CN), 1660 (w, C=C), 1465 (m), 1365 (w), 890 (s). ¹H NMR (CDCl₃): 4.87 (q, 2H, J = 2 Hz, CH₂^{-C}), 2.71-2.36 (m, 3H, CH₂-C=+CH-CN), 2.28-1.86 (m, 2H, CH₂-CH), 1.22 (s, 3H, CH₃C), 1.20 (s, 3H, CH₃C).[†]

2,2,3-Trimethylcyclopentane-1-carbonitrile (8). IR (CHCl3): 2970 (s), 2870 (m), 2220 (m, CN), 1470 (m), 1450 (m), 1390 (w), 1370 (m), MS (70 eV): 136 (6, (M-H)⁺1, 122 [26, (M-CH₃)⁺], 120 (5), 110 [6, (M-HCN)⁺'], 109 [20, (110-H)⁺], 96 [38, (M-CH₃CN)⁺], 95 [41, (110-CH₃)⁺], 84 [79, (M-CH₂-CH-CN)⁺⁻], 83 [22, (84-H)⁺], 81 [32, (96-CH₃)⁺:m_{oba} 68.26 and m_{out} 68.34], 69 [100, (84-CH₃)⁺], 56 [26, (84-C₂H₄)⁺; m_{ote} 37.37 and
m_{ote} 37.33], 55 [36, (83-C₂H₄)⁺; m_{ote} 36.50 and m_{ote} 36.45], 41 [64,
(69-C₂H₄)⁺; m_{ote} 24.41 and m_{ote} 24.36]. According to this compound existed in two isomeric forms: 8A with 1-CN and 3-Me trans (65%) and 8B with 1-CN and 3-Me cis (35%) . ¹H NMR (CDCl₃) of \$A: 2.62-2.33 (m, 1H, CH-CN), 2.11-1.68 (m, 5H, 2xCH₂+CH-CH₃), 1.08 (s, 3H, CH₃C, cis to CN), 0.90 (s, 3H, CH₃C, trans to CN), 0.89 (d, 3H, $J = 5.7$ Hz, CH₃CH, trans to CN). ¹H NMR (CDCl₃) of 8B: 2.62-2.33 (m, 1H, CH-CN), 2.11-1.68 (m, 5H, $2xCH_2 + CH - CH_3$), 1.16 (s, 3H, CH₃C, cis to CN), 0.90 (s, 3H, CH₃C, trans to CN), 0.87 (d, 3H, J = 6.5 Hz, CH₃CH, cis to CN).

Ethyl 3-cyano-1,2,2-trimethylcyclopentane-1-carboxylate (9). IR (CHCl₃):2975 (m), 2210 (vw), 1710 (s), 1460 (w), 1370 (w), 1255 (m), 1145 (m), 1095 (m). ¹H NMR (CDCl₃): 4.14 (q, 2H, J = 7 Hz, CH₂O), 2.92-2.66 (m, 1H, CH-CN), 2.20-1.86 (m, 4H, 2xCH₂), 1.27 (t, 3H, J = 7 Hz, CH₃CH₂), 1.23 (s, 3H, CH₃C, cis to CN), 1.17 (s, 3H, CH₃CCO₂Et, trans to CN), 1.05 (s, 3H, CH₃C, trans to CN). MS (70 eV): 209 (8, M⁺), 182 [9, M-HCN)⁺⁻], 181 [7, (182-H)*, 164 [7, (M-C₂H₃O)^{*}], 137 [13, (164-HCN)^{*}], 136 [100, (164-CO)^{*}:m_{oss} 112.82 and m_{osss} 112.78], 135 [44, (181-C₂H₃OH)^{*};m_{osss} 100.69 and m_{osss} 100.69), 120 [26, (135-CH₃⁺: m_{oba} 106.65 and m_{ok} 106.67], 109 [45, (136-HCN)⁺: m_{oba} 57.44 and m_{ok} 87.36], 95 [54, (136-CH₃CN)⁺: m_{oba} 66.41 and m_{cak} 66.31], 94 [22, (109-CH₃)⁺], 93 [11, (136-C₃H₇)⁺:m_{obs} 63.69 and m_{calc}^* 63.60].

1,7,7,-Trimethylbicyclo[2.2.1]heptan-2-dione (10). The IR and ¹H NMR were identical with Sadtler spectra 48091 and 20616, respectively.

REFERENCES

'Part V. P. Baas and H. Cerfontain, J. Chem. Soc. Perkin II, accepted for publication.

^{2a}P. Baas and H. Cerfontain, *J. Chem. Soc. Perkin* Π 1351 (1977); ^aIbid., accepted for publication.

³A. T. Glen, W. Lawrie and J. McLean, J. Chem. Soc. (C), 661 $(1966).$

⁴S. L. Murov, *Handbook of Photochemistry*, p. 181. Dekker, New York (1973).

⁵A. Mackor, Ph.D. Thesis (in English), University of Amsterdam, 1968; "p. 69; "p. 86.

⁶P. D. Bartlett, E. P. Benzing and R. E. Pinckock, J. Am. Chem. Soc. 82, 1762 (1960).

- ⁷R. S. Andrews, Ph.D. Thesis, University of Alabama (1969); W. White, Ibid. (1972); T. Okada, M. Kawanisi and H. Nozaki, Bull. Chem. Soc. Japan 42, 2981, (1969); H. Ohta and K. Iokumaru, Ibid. 48, 2393 (1975); S. Ishikawa, H. Sakuragi, M. Yoshida, N. Inamoto and K. Tokumaru, Chem. Letters 819 (1975); M. Yoshida, H. Sakuragi, T. Nishimura, S. Ishikawa and K. Tokumaru, *Ibid.* 1125 (1975); H. Sakuragi, S. Ishikawa, T. Nishumura, M. Yoshida, N. Inamoto and K. Tokumaru, Bull. Chem. Soc. Japan 49, 1949 (1976); K. H. Grellmann and E. Taner, Tetrahedron Letters 3707 (1974).
- ⁸P. Baas and H. Cerfontain, J. Chem. Soc. Perkin II, accepted for publication.
- ⁹M. J. Perkins and B. P. Roberts, J. Chem. Soc. Perkin II 297 $(1974).$
- ¹⁹S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. S. Shaw and R. Waish, Chem. Rev. 69, 279 (1969).
- ¹¹R. A. Sheldon and J. K. Kochi, J. Am. Chem. Soc. 92, 4395 (1970) .
- ¹²P. Baas, Ph.D. Thesis (in English), University of Amsterdam, 1977, p. 91.
- ¹³M. M. Rogić, K. P. Klein, J. M. Balquist and B. C. Oxenrider, J. Org. Chem. 41, 482 (1976).

[†]The spectroscopic data of 2,3,3 - trimethyl - 4 - cyanomethyl -1 - cyclopentene and 2,2 - dimethyl - 3 - methylcyano - 1 methylidenecyclopentane¹³ proved helpful in elucidating the structures of 6 and 7, respectively.